

HEALTHY BIRTH, GROWTH & DEVELOPMENT

knowledge integration

Country Segmentation: Tool and Application

Dave King and Sofia Trommlerova

October 2nd, 2017

Population & Surveillance Data Integration (PSDI)

Sofia Trommlerová Postdoctoral Researcher Erasmus University Rotterdam

Dave King Founder, Ceo Exaptive, Inc.

Matt Coatney VP, Services Exaptive, Inc.

Matthias Rieger Assistant Professor Dept. of Economics – Erasmus University Rotterdam

Nicholas Kassebaum Assistant Professor IHME – Univ. of Washington

David Rice Software Developer Exaptive, Inc.

Mark Wissler Software Developer & Architect Exaptive, Inc.

Sofia Trommlerová Postdoctoral Researcher Erasmus University Rotterdam

The segmentation tool

	Metric 1	Metric 2	Metric 3	Metric 4	Metric 5	Metric 6	Metric 7
Country 1	1	3	5	3	4	1	5
Country 2	2	2	3	1	5	1	2
Country 3	2	3	4	2	4	1	2
Country 4	1	2	1	3	3	2	3
Country 5	3	1	4	5	5	4	4

	Metric 1	Metric 2	Metric 3	Metric 4	Metric 5	Metric 6	Metric 7
Country 1	aabcdaffg	ddedghh	jjhhhssd	aabbccdd	aajjkllsss	ccddeefd	dkifdded
Country 2	daffeghg	deghhslif	aaddssd	aaassdg	eeddffss	ccddeeffd	edfkggh
Country 3	aabcdaffg	ddsseefh	eedfjkk	aabcdaffg	aabcdaffg	aabcdaffg	ddeeffgh
Country 4	aabcdaffg	aabbees	bbcccdde	aabcdaffg	aabcdaffg	ggffdkkk	cccddeeh
Country 5	aabcdaffg	jjdffhgl	llefdggs	aabcdaffg	aabcdaffg	aabcdaffg	dddeffg

		Empty String		String "B"							
			А	L	т	R	U	I	S	М	
Empty String		0	1	2	3	4	5	6	7	8	
	Р	1	1	2	3	4	5	6	7	8	
	L	2	2	1	2	3	_ ₄	5	6	7	
g "A"	А	3	2	2	2	3	4	► 5 ►	6	7	
Strin	s	4	3	3	3	3	4	5	5	6	
	м	5	4	4	4	4	4	5	6	5	
	А	6	5	5	5	5	5	5	6	6	

	Metric	1 Metric 2	Metric 3	Metric 4	Metric 5	Metric 6	Metric 7
Country 1	1	ddedghh	jjhhhssd	aabbccdd	aajjkllsss	ccddeefd	dkifdded
Country 2	2	deghhslif	aaddssd	aaassdg	eeddffss	ccddeeffd	edfkggh
Country 3	2	ddsseefh	eedfjkk	aabcdaffg	aabcdaffg	aabcdaffg	ddeeffgh
Country 4	1	aabbees	bbcccdde	aabcdaffg	aabcdaffg	ggffdkkk	cccddeeh
Country 5	3	jjdffhgl	llefdggs	aabcdaffg	aabcdaffg	aabcdaffg	dddeffg

	Metric 1	Metric 2	Metric 3	Metric 4	Metric 5	Metric 6	Metric 7
Country 1	1	3	5	3	4	1	5
Country 2	2	2	3	1	5	1	2
Country 3	2	3	4	2	4	1	2
Country 4	1	2	1	3	3	2	3
Country 5	3	1	4	5	5	4	4

Country Segmentation interactive tool

Explore clusters "Cluster Mode"

Country Segmentation interactive tool

Country Segmentation interactive tool

Looking at shifts in segmentation distance over time: Kuwait vs. Yemen

Application to child stunting

Positive/Negative exemplar analysis: Overview

Objective:

Identify which variables might be driving the large improvements or deterioration in child stunting in exceptional "exemplar" countries.

Steps:

1. Identify positive and negative exemplars in terms of child stunting:

- Positive exemplars: Countries that will be able to reach the World Health Assembly (WHA) target of reducing child stunting rate by 40% between 2012 and 2025
- Negative exemplars: Countries where child stunting is deteriorating
- 2. Run segmentation algorithm using a data set of potential determinants of child stunting
- 3. Overlay the exemplars and the segmentation clusters

Idea behind this approach:

Variables that drive the segmentation clusters with positive and negative exemplars might be the ones that actually drove the exceptional changes in the overperforming/underperforming countries.

Positive/Negative exemplar analysis: Data

- 1. Identification of exemplars: UNICEF-WHO-WB stunting rates
 - Coverage:
 - 39 focus countries years 1973-2014
 - → 2-23 observations per country, median 6
 - Sample:
 - 1973-2014 all data available
 - 2000-2014 recent developments

- 2. Creation of segmentation clusters: FAO and WHO-UNICEF data
 - FAO:
 - 43 variables
 - → food intake, dietary energy, food production and prices
 - → socio-economic conditions, infrastructure, and demography
 - WHO-UNICEF Infant & Young Child Feeding data:
 - 60 variables
 - → breastfeeding, dietary diversity, meal frequency

Positive/Negative exemplar analysis: Identification method

Estimation method:

Country fixed effects model with linear country-specific time trends Dependent variable (stunting) is transformed into logs → coefficients capture annual change in percent

Regression model:

Let c denote country in survey year t; N will denote sample size. We estimate equation:

Log (stunting_rate ct) = t c * β c + α c + ϵ ct

- Log (stunting_rate ct) is the N ×1 vector of logarithmic transformations of stunting rates
- α c is country fixed effect
- β c is annual change in stunting rate in country c in percent

Categorization:

- positive exemplar: β c < 3.85
 - → 3.85% is the annual rate necessary to achieve WHA target of reducing stunting rate by 40% in 2012-2025
- negative exemplar: β c > 0

Positive/Negative exemplar analysis: Visualization

Positive/Negative exemplar analysis: Visualization

Positive/Negative exemplar analysis: Visualization

Exemplars among the 39 countries that bear the greatest burden of stunting:

		(2) SAX Fingerprint Segmentation on Time-Series Trajectories of Non-Stunting Metrics										
		Segmentation cluster 1	Segmentation cluster 2	Segmentation cluster 3	Segmentation cluster 4	Segmentation cluster 5	Segmentation cluster 6	Segmentation cluster 7				
		 FAO1 - Average dietary energy supply adequacy FAO12 - Share of food expenditure of the poor FAO16 - Percent of arable land equipped for irrigation FAO10 - Domestic food price index 	FAO12 - Share of food expenditure of the poorFAO16 - Percent of arable land equipped for irrigationFAO19 - Domestic food price volatility	FAO3 - Share of dietary energy supply derived from cereals, roots and tubers FAO12 - Share of food expenditure of the poor FAO10 - Domestic food price index	IYCF2 - Ever Breastfed %: Female IYCF52 - Continued Breastfeeding 1 Year: Female IYCF53 - Continued Breastfeeding 1 Year: Male	FAO5 - Average supply of protein of animal originFAO12 - Share of food expenditure of the poorFAO19 - Domestic food price volatility	FAO1 - Average dietary energy supply adequacy FAO4 - Average protein supply FAO3 - Share of dietary energy supply derived from cereals, roots and tubers	FAO18 - Political stability and absence of violence/terrorism FAO16 - Percent of arable land equipped for irrigation FAO10 - Domestic food price index				
ession ing)	+											
ear Regroog	-											
(1) Lin on L	+/-											

		(2) SAX Fingerprint Segmentation on Time-Series Trajectories of Non-Stunting Metrics									
			Segmentation o Positive Ex	lusters with emplars		Segmentation Negative I	Mixed				
		Segmentation cluster 7	Segmentation cluster 6	Segmentation cluster 4	Segmentation cluster 2	Segmentation cluster 1	Segmentation cluster 3	Segmentation cluster 5			
		 FAO18 - Political stability and absence of violence/terrorism FAO16 - Percent of arable land equipped for irrigation FAO10 - Domestic food price index 	 FAO1 - Average dietary energy supply adequacy FAO4 - Average protein supply FAO3 - Share of dietary energy supply derived from cereals, roots and tubers 	IYCF2 - Ever Breastfed %: Female IYCF52 - Continued Breastfeeding 1 Year: Female IYCF53 - Continued Breastfeeding 1 Year: Male	FAO12 - Share of food expenditure of the poor FAO16 - Percent of arable land equipped for irrigation FAO19 - Domestic food price volatility	 FAO1 - Average dietary energy supply adequacy FAO12 - Share of food expenditure of the poor FAO16 - Percent of arable land equipped for irrigation FAO10- Domestic food price index 	 FAO3 - Share of dietary energy supply derived from cereals, roots and tubers FAO12 - Share of food expenditure of the poor FAO10 - Domestic food price index 	FAO5 - Average supply of protein of animal originFAO12 - Share of food expenditure of the poorFAO19 - Domestic food price volatility			
ession ing)	+	Peru South Africa	Turkey	Vietnam	Angola			Ghana 💄			
ear Regre og(Stunt	-					Burundi Madagascar Pakistan	Mali	Afghanistan Egypt			
(1) Lin on L	+/-							Ivory Coast			

Next steps

Next steps: Test the tool

So far:

- Identify segmentation clusters
- Overlay these clusters with classification of countries based on a different data source

Next steps:

1. Asses the explanatory power of the segmentation tool

- Apply the segmentation algorithm to non-stunting variables measured at country level
- Estimate individual-level models (i.e. child level):
 - Do segmentation clusters explain extent/probability of child stunting at individual level?
 - Does including the segmentation clusters into the model increase its explanatory power?
 - Are associations between individual stunting and its determinants similar within the segmentation cluster?

2. Relevance of (different) data sources

Run segmentation algorithm and individual-level models on the same data source

3. Sensitivity of segmentation clusters to variables included in the algorithm

- Exclude input variables one at a time
- Identify variables that lead to the largest differences in segmentation clusters