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Abstract

Objectives: Conditioning child growth measures on baseline accounts for regression
to the mean (RTM). Here, we present the “conditional random slope” (CRS) model,
based on a linear-mixed effects model that incorporates a baseline-time interaction
term that can accommodate multiple data points for a child while also directly
accounting for RTM.

Methods: In two birth cohorts, we applied five approaches to estimate child growth
velocities from 0 to 12 months to assess the effect of increasing data density (number
of measures per child) on the magnitude of RTM of unconditional estimates, and the
correlation and concordance between the CRS and four alternative metrics. Further,
we demonstrated the differential effect of the choice of velocity metric on the magni-
tude of the association between infant growth and stunting at 2 years.

Results: RTM was minimally attenuated by increasing data density for unconditional
growth modeling approaches. CRS and classical conditional models gave nearly
identical estimates with two measures per child. Compared to the CRS estimates,
unconditional metrics had moderate correlation (r5 0.65–0.91), but poor agreement
in the classification of infants with relatively slow growth (kappa5 0.38–0.78). Esti-
mates of the velocity-stunting association were the same for CRS and classical
conditional models but differed substantially between conditional versus uncondi-
tional metrics.

Conclusion: The CRS can leverage the flexibility of linear mixed models while
addressing RTM in longitudinal analyses.

1 | INTRODUCTION

Estimation of the rate of change over time in a child’s physi-
cal size is essential for epidemiological studies of the deter-
minants and consequences of variations in child growth.

Methods to estimate growth velocity in early life are particu-
larly relevant to the developmental origins of health and dis-
ease (DOHaD) hypothesis; for example, the pace of early
postnatal growth or weight gain may influence the risk of
obesity and cardiometabolic diseases later in life (Victora
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et al., 2008). However, there is currently a lack of consensus
on the operational definition of growth velocity, leading to
inconsistent use of statistical strategies to quantify growth in
epidemiology.

Estimates of growth velocity within a particular age inter-
val should ideally be independent of the child’s size at the
beginning of the interval (Cole, 1995, 1998; Keijzer-Veen
et al., 2005). Uncoupling growth from baseline size enables
inferences about growth that are specific to a particular
developmental window, by removing the effect of regression
to the mean (RTM) which is the natural tendency of extreme
measures to be closer to the population mean size on a subse-
quent or preceding time point (Cameron, Preece, & Cole,
2005; Cole, 1994). The phenomenon of RTM is particularly
relevant in the first few years of life when there is substantial
inter-individual variability in growth patterns, before children
settle into stable size rankings with respect to peers (Cole,
1995; Mei, Grummer-Strawn, Thompson, & Dietz, 2004).

Conditional growth metrics have been applied in numerous
DOHaD studies of the association between early linear growth
and chronic disease risk factors later in life (Adair et al., 2013;
Keijzer-Veen et al., 2005). However, the classical formulation of
conditional velocity relies on only two measurement time points,
and therefore does not accommodate multiple anthropometric
measurements for each child within the interval. Flexible meth-
ods for handling longitudinal data have been applied to model
early childhood growth trajectories, such as linear mixed-effects
(LME) models using linear spline functions (Howe et al., 2013)
and nonlinear approaches such as SuperImposition by Transla-
tion and Rotation (SITAR) (Beath, 2007; Cole, Donaldson, &
Ben-Shlomo, 2010; Johnson, van Jaarsveld, Llewellyn, Cole, &
Wardle, 2014; Jones-Smith et al., 2013); however, these
approaches are typically “unconditional” in that they do not
directly account for RTM. Increasing the data density (i.e., num-
ber of observations per child within a specified age interval)
could indirectly minimize the effect of RTM if mid-interval data
sufficiently overcome the leverage of the baseline value; alterna-
tively, the estimation of individual-specific random slopes (i.e.,
best linear unbiased predictors, or BLUPs) may account for
RTM, as the estimate of velocity is shrunk towards the group
mean relative to the observed values (Robinson, 1991). How-
ever, neither increasing data density nor the performance of
BLUPs have been empirically tested with respect to their effects
on RTM in the context of infant growth analyses.

Here, we propose the “conditional random slope” (CRS),
a hybrid longitudinal and conditional approach based on a
LME model that is a direct generalization of the classical con-
ditional growth approach, but can leverage the availability of
multiple and variable timed data points within the age interval
of interest. In this study, we focused on linear growth from 0
to 12 months because of the considerable inter-individual var-
iability in linear growth in this age range (leading to substan-

tial RTM), and because it is a period of public health
relevance in which growth-sensitive interventions are most
likely to have long-term effects (Stein et al., 2010; Victora, de
Onis, Hallal, Blossner, & Shrimpton, 2010). The specific
objectives of this study were to: (1) determine whether the
effect of RTM on unconditional estimates of growth velocity
is attenuated by increasing the density of individual-level
observations from 0 to 12 months; (2) evaluate the correlation
and agreement in classification between the CRS and four
selected alternative conditional and unconditional growth
velocity metrics; and (3) compare the different infant velocity
metrics in terms of the magnitude of their associations and
predictive accuracies for stunting at 2 years.

2 | METHODS

2.1 | Data sources

We used two datasets that were accessed through the Healthy
Birth, Growth, and Development Knowledge Integration
(HBGDki) program funded by the Bill and Melinda Gates
Foundation (Table 1). Cohorts A and B were birth cohorts from
Vellore, India (Paul, Gladstone, Mukhopadhya, & Kang, 2014),
and Karachi, Pakistan (Global Grand Challenges, 2012),
respectively.

Length measurements were scheduled monthly in both
cohorts, yet actual frequencies and timings of anthropometric
measurements differed across the datasets (Table 1). To gener-
ate comparable estimates of growth velocity, observations
were selected so that each child had the same individual-level
data density from 0 to 12 months; for example, for a data den-
sity of three observations per child, only the closest observa-
tions to 0, 6, and 12 months were retained in the analysis for
each child (details on sampling of observations can be found
in Supporting Information Table A1). To ensure that the same
children were included in all analyses irrespective of data den-
sity, those with fewer than five observations from 0 to 12
months were excluded. We performed sensitivity analyses in
which we excluded children for whom the earliest observation
occurred beyond the first week of life.

We modeled length-for-age z-score (LAZ) using the
World Health Organization (WHO) Child Growth Standards
(WHO Health Organization, 2006) instead of raw length for
the following reasons: (1) whereas the mean trajectory of raw
length is a nonlinear function of age, the null hypothesis is
that the mean LAZ trajectory is linear in all intervals, thereby
simplifying the model; and, (2) mean LAZ velocity of the
study population can be compared to the standard normal pat-
tern for healthy children. We excluded extreme LAZ values
based on WHO recommendations (LAZ> 6 or LAZ<26).

To allow for comparisons across metrics within each
cohort, we internally standardized the velocity estimates for
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the cohort-specific distribution of observed velocities within
the interval (i.e., divided each child’s velocity estimate by
the empirical standard deviation of the velocities across the
cohort). For each metric, the standardized velocity is a veloc-
ity z-score (analogous to LAZ), whereby each child’s esti-
mate can be interpreted as a relative measure of his/her
growth rate compared to the mean of the cohort. In this arti-
cle we focus on growth in length, but the principles can be
applied to other anthropometric variables.

2.2 | Velocity metrics

We estimated cohort-average growth trajectories, and indi-
vidual growth velocities for the analyses using the CRS app-
roach, a classical approach to conditional growth, and three
unconditional growth velocity metrics:

2.2.1 | Unconditional change in LAZ

DLAZj 5 LAZ1j – LAZ0j

LAZij is LAZ at age i for child j. DLAZj is the arithmetic
difference between LAZ at the end (LAZ1j) and beginning
(LAZ0j) of the interval of interest. This unconditional differ-
ence can be considered a metric of velocity when the interval
duration is constant for all children.

2.2.2 | Classical conditional change in LAZ

LAZ1j5 b01b1 LAZ0j
� �

1Eij

The conditional delta LAZ (also referred to as the condi-
tional standard deviation score (SDS)) is the difference
between observed and expected LAZ at the end of the inter-
val, where expected value is based on LAZ0j. The condi-
tional SDS can be derived by calculating Eij, the residual at
age i for child j, after regressing size at or near the end of the
interval (LAZ1j) on baseline size (LAZ0j). As such, Eij, repre-
sents the portion of LAZ1j that is uncorrelated with LAZ0j.

2.2.3 | Fixed slope estimate of the change
in LAZ (unconditional)

LAZij5 b0j1b1j tð Þ 1Eij

The fixed slope is the individual-specific slope from a sep-
arate linear regression of LAZ on time for each child, whereby
b1j represents the rate of change of LAZj over the specified
interval for the infant. This model is a generalization of the
unconditional change model, whereby the estimation of veloc-
ity is not restricted to using LAZ at only two time points (i.e.,
beginning and end of the interval of interest).

2.2.4 | Random slope estimate of the change
in LAZ (unconditional)

LAZij5 b01b1 tcð Þ1l0j1l1j tcð Þ 1Eij

l0j

l1j

 !
� N

0

0

 !
;

r2
l0j 0

0 r2
l1j

 !( )

TABLE 1 Description of data sources

Cohort A Cohort B

Years of enrolment 2002–2006 2012–2014

Country India Pakistan

Age at observation Birth to 3 years Birth to 2 years

Sample recruited 373 380

Excluded due to incomplete dataa, n (%) 25 (6.7%) 18 (4.7%)

Revised sample size 348 362

Number of observations from birth to 12 months of age per child, median (range) 11 (5, 13) 12 (6, 13)

Age in days at baseline observation,b median (range) 29 (1, 66) 7 (1, 68)

Baseline LAZ, mean6 SD 20.946 1.3 21.416 1.7

Age in days at follow-up, median (range) 347 (316, 365) 340 (306, 355)

Follow-up LAZ, mean6 SD 21.976 1.3 22.646 1.1

aChildren with fewer than 5 observations from birth to 12 months were excluded from all analyses.
bDay 1 is day of birth.
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Eij� N 0;r2
E

� �
The random slope is the child-specific rate of change in

LAZj relative to the group mean over a specified interval,
where LAZij is LAZ at age i for subject j; b0 and b1 are
fixed effects; l0j and l1j are subject-specific random effects,
tc is centered age and Eij is the residual error. The random
effects are assumed to follow a bivariate normal distribution
with zero means with variances r2

l0 and r2
l1; and Eij are

assumed to follow a normal distribution with mean zero and
variance r2

E. An unstructured covariance matrix is typically
selected for growth models to allow variance and covariance
estimates to be distinct (Johnson, Balakrishna, & Griffiths,
2013); however, due to issues with model convergence at
low data density, we used an independent covariance matrix
instead with the age variable centered, whereby the random
effects may have unique variances but do not co-vary. This
is a reasonable assumption since the slope is theoretically
uncorrelated with the age-centered intercept (mean LAZ over
the specified interval) (Blance, Tu, & Gilthorpe, 2005;
Oldham, 1962). However, we used an unstructured covari-
ance matrix in a sensitivity analysis. Covariance of within-
subject residuals was assumed to be zero; however, infer-
ences were unchanged in models that used first-order autore-
gressive residual correlation matrices (not shown).

2.2.5 | Conditional random slope estimate
of the change in LAZ

LAZij5 b01b1 tcð Þ1l0j1l1j tcð Þ1b2 tc3cLAZ0j
� �

1Eij

l0j

l1j

 !
� N

0

0

 !
;

r2
l0j 0

0 r2
l1j

 !( )

Eij � N 0;r2
E

� �
Our proposed metric, the conditional random slope

(CRS), is based on a similar model as the LME model
described above, but with an adjustment for baseline LAZ-
time interaction. LAZij is the LAZ at age i for subject j; b0

and b1 are fixed effects; l0j and l1j are subject-specific ran-
dom effects; b2 is the coefficient for the baseline LAZ-time
interaction term; cLAZ0j is baseline LAZ centered at the
mean; tc is centered age and Eij is the residual error. The ran-
dom effects are assumed to follow a bivariate normal distri-
bution with zero means with variances r2

l0 and r2
l1; and Eij

are assumed to follow a normal distribution with mean zero
and variance r2

E. The CRS model also assumes an independ-
ent covariance structure for the random effects. The inde-
pendence assumption is identical to that implied by the
classical formulation of the conditional SDS (Cole, 1994,
1995, 1998; Keijzer-Veen et al., 2005) (Supporting Informa-
tion B). In primary analyses, we did not include the main

effect of baseline size (LAZ0j) in the model because the vari-
ability in baseline LAZ is already captured by the random
intercept (l0j); however, we included a main effect for LAZ0j
in a sensitivity analysis.

2.3 | Analysis

2.3.1 | Effect of individual-level data density
on regression to the mean

The degree of RTM was examined by calculating Pearson’s
correlation coefficients between velocity estimates and base-
line size at varying data densities for each method and
cohort. Negative velocity-baseline correlations are indicative
of RTM.

2.3.2 | Correlation and concordance among
growth velocity metrics

Correlations and agreement between the CRS and the four
alternative velocity metrics were assessed using Pearson’s
correlation coefficient, Cohen’s Kappa statistic and % dis-
cordance with respect to the classification of children as
“abnormal,” whereby abnormal was defined as velocity esti-
mates below the metric-specific 10th percentile. Goodness-
of-fit for mixed-effects models was assessed using the
Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC).

2.3.3 | Velocity-stunting association
and prediction

To demonstrate the applicability of the CRS in an epidemio-
logical context, we estimated the association between growth
velocity in infancy and stunting (LAZ<22) at 2 years (or
latest available age up to 2 years) for each velocity metric
and across varying data density. This was a two-step app-
roach described previously (Anderson et al., 2013), where
internally standardized velocity estimates were first estimated
by each method and then exported for use as the independent
variable in subsequent logistic regression models. Metric-
specific odds ratios (ORs) were presented for decreasing
velocity for ease of interpretability; that is, the relative odds
of stunting at 2 years for every one standard deviation reduc-
tion in velocity from 0 to 12 months. The C-statistic, which
is the area under the curve (AUC) of the receiving operating
characteristic (ROC) curve, was also calculated for each
model to assess a metric’s predictive accuracy for stunting at
2 years.

Analyses and visualizations were performed using
STATA version 13 (Stata Corporation, College Station, TX).
The Research Ethics Board at the Hospital for Sick Children
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(Canada) approved the analyses of the anonymized datasets.
Data collection for the original cohort studies A and B were
approved by The Aga Khan University (Pakistan) and Chris-
tian Medical College (India), respectively.

3 | RESULTS

3.1 | Study populations

Children with fewer than five observations from 0 to 12
months were excluded, leaving 710 children eligible for the
analyses from both cohorts (Table 1). The two cohorts dif-
fered in terms of: (1) number of observations per child; (2)
baseline and follow-up LAZ; and (3) age at baseline and
follow-up measurements. Furthermore, population-average
LAZ trajectories of the two cohorts showed varying degrees
of deviation from the international standard, but estimates
were similar across the different modeling approaches (Sup-
porting Information Table C1). The group mean LAZ slope
was determined by visual inspection to be approximately lin-
ear in both cohorts (Supporting Information Figure D1).

3.2 | Effect of data density on regression
to the mean

Using unconditional growth modeling approaches, RTM was
minimally attenuated by increasing data density in both co-
horts (Table 2). Even after incorporating all available data
points, there remained a moderate inverse correlation between
baseline size and the subsequent rate of change (Table 2).

3.3 | Correlation and concordance among
growth velocity metrics

Two-point estimates of the CRS and the conditional delta
LAZ were nearly equivalent in both datasets, providing an
empirical proof-of-concept of the exchangeability of these
methods when only two data points per child are available
(consistent with the mathematical proof in Supporting Infor-
mation B). There were strong correlations and agreement
among the three unconditional metrics (Supporting Informa-
tion Tables E1–3). Unconditional metrics had only moderate
correlation and poor agreement with the conditional esti-
mates, in both cohorts (Table 3; Figure 1). As expected,
these discrepancies were accentuated at the extremes of the
velocity distributions, as indicated by the high rate of dis-
cordance in the identification of ‘abnormal’ growth in the
face of reasonably robust correlation. Furthermore, there was
no clear or consistent pattern of improvement or deteriora-
tion in correlation/agreement with increasing data density in
both cohorts (Table 3). The AICs and BICs for unconditional
and conditional random slope models were very similar in
both cohorts (Supporting Information Table F1).

3.4 | Growth velocity in infancy and stunting
at age 2 years

The expected association between slower growth velocity in
infancy and higher odds of stunting at or near 2 years was
very similar between CRS estimates versus conditional SDS
in the two-point models; however, increasing the number of

TABLE 2 Correlation between estimated length-for-age z-score (LAZ) velocity from birth to 12 months of age and baseline LAZ using differ-
ent analytical approaches and variable number of observations per child

Cohort Velocity—Baseline Correlationa

No. of observations
per childb

Conditional delta
vs. baseline

Unconditional delta
vs. baseline

Fixed slope
vs. baseline

Random slope
vs. baseline

Conditional random
slope vs. baseline

Cohort A

2 0.00 20.57 20.57 20.57 0.00
3 – – 20.56 20.56 0.00
4 – – 20.49 20.49 0.00
5 – – 20.48 20.48 0.00
All – – 20.41 20.41 0.00

Cohort B

2 0.00 20.76 20.76 20.76 0.00
3 – – 20.76 20.76 0.00
4 – – 20.71 20.71 0.00
5 – – 20.71 20.71 0.00
All – – 20.62 20.62 0.00

aAll correlation coefficients for unconditional metrics were statistically significant (P< 0.05).
bEvery child has at least five observations: at or close to birth, at or close to 12 months of age, and up to 3 additional observations included within the interval from birth
to 12 months of age. Analyses of “all” observations included the core five and all other available observations to a maximum of 13 observations per child.
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observations per child progressively attenuated the estimates
based on the CRS models (Table 4). Associations with
stunting were consistently stronger for conditional velocity
metrics, irrespective of data density, in comparison to uncon-
ditional velocity metrics (Table 4; Figure 2).

3.5 | Sensitivity analyses

Inferences from the following three sensitivity analyses were
the same as primary analyses: (1) using an unstructured covari-
ance structure for the unconditional random slope model to
demonstrate that unstructured versus independent covariance
yielded similar inferences (Supporting Information Tables G1–
3); (2) including baseline as a main effect in the CRS approach
in order to demonstrate that the inferences were not quantita-
tively affected by its exclusion in primary analyses (Supporting
Information Tables H1–3); and (3) excluding children with a
baseline measurement beyond the first week of life to limit the
potential error in the estimation of the interaction term of the
CRS approach (Supporting Information Tables I1–3).

4 | DISCUSSION

The CRS is a novel approach for estimating conditional
growth velocity based on a LME model that incorporates a

baseline size-age interaction term. This model is straightfor-
ward, leverages the flexibility of a longitudinal mixed model
while addressing RTM, and is a generalization of the classi-
cal formulation of the conditional SDS model (Cole, 1995,
1998; Keijzer-Veen et al., 2005). We demonstrated that
when more than two measurements per child are available
for an age interval of interest, CRS models provide a feasible
approach for quantifying inter-individual variations in child
growth while accounting for RTM.

This study demonstrated the parallels between the CRS
and classical SDS models as well as drew important distinc-
tions between unconditional and conditional growth metrics.
First, we showed that the conditional approach could not be
simply approximated by increasing the number of intra-
interval data points or estimation by random effects in
unconditional models. Increasing the number of individual-
level observations did not attenuate RTM, as there was sub-
stantial leverage by baseline and follow-up sizes irrespective
of the addition of mid-interval values. Furthermore, the use
of BLUPs alone (unconditional random slope model) did not
eliminate RTM. Even though a child’s estimates were shrunk
toward the mean trajectory, the degree of shrinkage was pro-
portional across the cohort (due to the use of balanced data),
such that children’s relative rankings remained the same and
the coupling of baseline to slope still remained. Therefore,
irrespective of data density, conditional and unconditional
metrics were discordant with respect to the identification of
children with relatively low growth velocity. In some instan-
ces, approximately half of the children experiencing “abnor-
mal” growth by conditional methods were classified as
“normal” using unconditional velocity measures. Although
we defined growth as abnormal only at the lower end of the
distribution (i.e., velocity at or below the 10th percentile),
the phenomenon is symmetrical and would be analogous for
the “fastest growing” 10% of children.

Unconditional models also yielded estimates of the
velocity-stunting association that were attenuated relative to
conditional metrics; this was most clearly demonstrated in
Cohort B, in which two-point unconditional velocity estimates
were not associated with stunting at 2 years, whereas the condi-
tional metrics yielded robust associations and high predictive
accuracy. The reason for this discordance is that stunting at 2
years is highly correlated with LAZ at 1 year (LAZ1j), which is
algebraically more similar to conditional velocity (LAZ1j-
r*LAZ0j) than unconditional velocity (LAZ1j – LAZ0j) given
that r< 1 (i.e., there is imperfect correlation between LAZ at
baseline and LAZ at 1 year of age). The purpose of this analy-
sis was to demonstrate the differential effect of the choice of
velocity metric in an epidemiological context. However, the rel-
ative strengths of associations of conditional versus uncondi-
tional velocity metrics would be expected to differ for other
outcomes that are less directly related to LAZ (e.g., obesity,
neurodevelopment).

FIGURE 1 Illustrative examples of the unconditional and condi-
tional trajectories from birth to 12months of age for two infants from
Cohort A. The infants had different baseline length-for-age z-scores
(LAZ) but similarly declining unconditional growth trajectories (dashed
lines). Child 1 had a lower baseline LAZ that was below the group mean
and further from the mean compared to Child 2. Therefore, Child 1 had a
steeper negative conditional trajectory, implying slower conditional rela-
tive growth compared to Child 2. Note that conditioning the change in
LAZ on baseline LAZ alters the LAZ scale onwhich conditional velocities
are quantified; therefore, for the conditional trajectories, the predicted
LAZ (y-axis value) that corresponds to a given age (on the x axis) cannot
be inferred from the conditional trajectories shown in the figure. However,
conditional trajectories are plotted to demonstrate conceptually how infer-
ences about growth velocity (i.e., slopes) may differ between uncondi-
tional and conditional approaches
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The most important contribution of this study was the
empirical and algebraic demonstration that the CRS provides
a general solution to the classical conditional SDS (Cole,
1995, 1998). Estimates of individual-level velocity were
nearly perfectly correlated and concordant between the two-
point CRS and classical SDS models, and the magnitude of
the association of infant growth velocity with stunting at 2
years of age was also nearly identical. However, the
approaches differ in that the conditional SDS relies only on
data at the beginning and end of the age interval that must be
observed for every child and therefore mid-interval measure-
ments are ignored. Longitudinal data structure may be a dis-
incentive to using the classical formulation, as data within an
interval of interest are often dense (>2 observations per indi-
vidual) and flexible (variable frequency and timing of obser-
vations). An additional advantage of the CRS method over
the classical conditional approach is that the population-
average slope is estimated in the same model as the child-
specific random slopes, when both baseline LAZ and age are
centered at their respective means (Supporting Information
Table C1). Therefore, each child’s velocity can be reported
as a deviation from the international standard by summing
the group-specific fixed effect and child-specific random
effect, while maintaining appropriate correction for child-
level regression to the empirical group mean. In most epide-
miological analyses, the focus will be on inter-individual var-
iation that is entirely captured by the child-specific random
effects alone because the fixed effect is constant across all
individuals. However, for disadvantaged populations in
countries with high burdens of child growth faltering, it is
important to be able to describe both the child’s deviation
from the group mean and the group’s deviation from the
international standard.

Despite its theoretical appeal, the practical advantages of
the CRS remain to be explored. For example, we found that
both the CRS approach and the conditional SDS seem to
allow for variable timing of baseline size, as we used two
datasets that differed with regards to the timing of baseline
LAZ. Although the variable timing of baseline measurement
may bias the estimation of the interaction term for the CRS
approach (or the correlation coefficient between LAZ1 and
LAZ0 for the conditional SDS), inferences from the main
analyses were the same between and within datasets when
analyses were restricted to infants with baseline measures in
the first week of life (Supporting Information Tables I1–3),
perhaps because the range of ages for which baseline
occurred was a minor fraction of the total interval from 0 to
12 months. Future work should assess the appropriate time-
frame for the consideration of a baseline measurement, as
well as test methods to manage missing baseline measure-
ments (i.e., multiple imputation) for use in conjunction with
CRS estimation. Another consideration was that in the analy-
ses of the association of conditional velocity with stunting at
age 2 years, the more complex approach (CRS) was not nec-
essarily more informative than the more straightforward con-
ditional SDS approach. This may have partly resulted from
the artificial data structure we implemented (i.e., all children
in the dataset had baseline and follow-up LAZ) and the
assumption of linearity, which may have minimized variabil-
ity in velocity among children. Further research on the asso-
ciation between conditional velocity and later health
outcomes is needed to weigh the advantages and disadvan-
tages of using the CRS.

A limitation of this study was the lack of consideration
of gestational age at birth, as this information was not avail-
able in both cohorts. Using chronological age for all

FIGURE 2 Receiver operating characteristic (ROC) curves for stunting prediction at 2 years of age using two-point unconditional random slope
models and two-point conditional random slope models. C-statistics of the individual metrics (equivalent to the area under the curve [AUC] of the ROC
curve) are a standardmeasure of predictive accuracy, where 1.0 would indicate the metric perfectly identifies stunting at 2 years of age, and 0.5 would
imply the metric is no better than chance
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children, irrespective of gestational age at birth, may bias the
classification of growth trajectories, resulting in biased esti-
mates of the association between growth velocity and stunt-
ing at 2 years (Perumal, Gaffey, Bassani, & Roth, 2015).
Another weakness of the study was that our analyses were
only applied to LAZ from 0 to 12 months. Further analyses
are needed to demonstrate that the principles explored in this
article are applicable to other anthropometric variables and in
other age intervals of interest. Finally, we provided only a
limited empiric demonstration of the association between
LAZ velocity in the first year of life and a later outcome, to
highlight the similarity between CRS and classical condi-
tional SDS in an epidemiologic context, and to reinforce the
divergent inferences that may be generated by conditional
and unconditional models (Tu, Tilling, Sterne, & Gilthorpe,
2013). More comprehensive comparisons of the performance
of the various growth modeling approaches for a range of
health outcomes were beyond the scope of the present study.

Growth velocity in infancy is a key developmental indica-
tor that is associated with long-term outcomes (Adair et al.,
2013; Brands, Demmelmair, & Koletzko, 2014; Kelishadi and
Poursafa, 2014; Langley-Evans, 2015; Stein et al., 2010). The
CRS approach enables estimation of individual-specific condi-
tional growth velocities in longitudinal cohort studies in which
there are multiple size measurements per child within the age
interval of interest. Further efforts are required to extend and
validate the applicability of the CRS approach to epidemiologi-
cal studies in which researchers wish to investigate risk factors
for relatively slow or fast child growth, or studies of association
between early growth and later outcomes.
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